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Abstract
This article deals with a model describing the growth of settle-

ments as a fractal. Long-term settlement growth is a result of non-
linear relations between socio-economic development and popula-
tion size. Our model explains the scaling in settlement populations, 
the demographic constants, and the conditions for the formation of 
small centers in the hierarchy of central places.
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Introduction

Over the decades, archaeologists have indicated stable population 
values for human groups all over the world. These stable values or 
demographic constants within long-term population growth were 
explained with carrying capacity, economics, social or political or-
ganization of the societies and interactions between their members 
(Birdsell 1953; 1968; Ember 1963; Carneiro 1967; 1987; Reynolds 1972; 
Glassow 1978; Hassan 1981; Johnson 1982; Kosse 1990; 1994; Dunbar 
1992; 1998; 2008; Fletcher 1995; Hill/Dunbar 2003; Kolesnikov 2007; 
Feinman 2011 et al.; also see critics in Ruiter et al. 2011). This paper 
shows that there are few equilibrium patterns in the non-equilibri-
um process of settlement growth. Instead, the population growth of 
both prehistoric settlements and modern cities are characterized by 
the same fractal structure. This allows the prediction of population 
distributions in the future.
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The contemporary state of the correlation between socio-eco-
nomic development of a society and its population was discussed 
by R. Fletcher. He showed that different socio-economic systems 
of various ethnic groups produce equal-sized settlements (Fletcher 
2006). G.M. Feinman (2011) argues that the problem of relationship 
between size and complexity in human collectives requires a third 
key parameter, integration or interpersonal connectivity.

Other recent papers deal with the fractal population structure of 
discrete human groups and nonlinear scaling of the space in use. 
W.-X. Zhou, D. Sornette, R. A. Hill and R. I. M. Dunbar (2005) found a 
constant scaling ratio of 3 in group sizes. M. J. Hamilton, B. T. Milne, 
R. S. Walker, O. Burger and J. H. Brown (2007b) indicated a scaling ra-
tio close to 4 in hunters-gatherer societies. M. J. Hamilton, R. S. Walk-
er, J. H. Brown and co-authors showed nonlinear scaling relations be-
tween the area required by an individual and the group size among 
hunters-gatherers (Hamilton et al. 2007a). They also proposed a 
model of human ecology that includes population dynamics and 
spatial scaling. The model shows that cooperation between individ-
uals affects equilibrium population sizes and densities (Hamilton et 
al. 2009). Analyses of the fractal structure of modern city growth are 
developed in geography (Batty 2005; 2007). All of these studies intro-
duced the problem of the fractal structure of the long-term growth 
of settlements.

The following models, some were well-known in economic geog-
raphy before B. Mandelbrot introduced the term “fractal” in 1975, 
produce fractal-like regularities as well. These models inculde the 
gravity model, central place theory (hereinafter CPT), the rank-size 
rule, the allometric growth model (Nordbeck 1965; 1971; Wolden-
berg/Berry 1967; Woldenberg 1969; 1973; Arlinghaus 1985; Zubrow, 
1985; Goodchild/Mark 1987; Arlinghaus/Arlinghaus 1989; Wong/
Fotheringham 1990, pp. 90–92; Laxton/Cavanagh 1995; Appleby 
1996; West et al. 1997; Brown et al. 2002; 2005, pp. 61–62; Chen/Zhou 
2004; 2006; 2008; Chen 2009a; 2009b; 2011 et al.). Since the models 
from economic geography have fractal properties, they might be 
useful for the study of population size scaling. This study examines 
demographic constants and factors that influence long-term growth 
of settlements. We will start with the correlation between different 
spatial models and their utility for the analysis of population growth.

A Model

Assumption 1: Assume two equal populations live in settlements 
with equal resource zones of a limited size. “Political control” is a var-
iable that is spatially distributed. Within the area of political control, 
the value of the “political control” variable is greater than zero. Be-
yond the area of political control the variable equals zero. The “polit-
ical control” of the settlements does not extend beyond the bound-
aries of their resource zones.
Development: First, we will consider the resource zones. The bound-
aries of the resource zones of the settlements may be written using 
the gravity model (Reilly’s law) (Reilly 1931):

(1)

where Pi and Pj are the size of populations for settlements i and j. 
Dji is the distance between them. Dbj is the distance from the set-
tlement j to the boundary of its resource zone at point b, where the 
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resource zone of settlement j touches the resource zone of settle-
ment i.

Second, we will consider “political control.” The boundary of the 
zone under “political control” of a settlement may be written using 
the “Xtent” model of C. Renfrew and E. Level:

(2)

(1)

(2)

(3)

(4)

(5)

where P a is the population of settlement j raised to power a (0.5). Dbj 
is the distance to the boundary of the zone under “political control” 
at point b; and c is a scaling factor (Renfrew/Level 1979, pp. 149–150). 
The scaling factor c reflects the total number and volume of a settle-
ment’s functions.

Third, assumption 1 makes it possible to integrate the gravity mod-
el and the “Xtent” model into a single equation system:

j

Thus:

Since the populations of settlements i and j, and their resource 
zones are equal, the relation between the settlement population (P), 
the size of its resource zone and the scaling factor may be written as 
follows:

In fact, equation 4 repeats equation 2. This means that the gravity 
model with an exponent of 2 and the “Xtent” model with an expo-
nent of 0.5 produce identical results (Kosso/Kosso 1995).

Let us consider the dependence of population growth on the in-
crease of the scaling factor. According to site catchment analysis, the 
distance from the settlement to the border of its resource zone can-
not be more than 5,000 – 6,000 m (Chisholm 1962; Vita-Finzi/Higgs, 
1970; Higgs/Vita-Finzi 1972; Jarman 1972; Jarman et al. 1972; Roper 
1979 et al.). This means:

The exact values of the scaling factor c are not known for an ab-
stract social medium. Therefore, following equation 5, we have gen-
erated the population values P for the values of c between 0.001 and 
0.015, with intervals of 0.001. The first five are as follows:

P = 25…36 (for c = 0.001);
P = 100…144 (for c = 0.002);
P = 225…324 (for c = 0.003);
P = 400…576 (for c = 0.004);
P = 625…900 (for c = 0.005).
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Discussion of the preliminary results

The model population values we obtained are close to the demo-
graphic constants that were recently carried out by M.A. Kolesnikov, 
based on data from societies of Australia, Micronesia and the west-
ern part of North America. He analyzed data from 238 groups and 
subgroups in pre-stratified and early stratified societies. He showed 
that different population groups strive to limit their numbers to 25, 
100, 200 and 500 persons (Kolesnikov 2007).

However, the value of 200 obtained by М.A. Kolesnikov is some-
what lower than our corresponding model value of 225…324. Such 
a difference may be explained by the values of the scaling factor c. 
There might be rounding error, because c has only three digits after 
the decimal point. When the value of c is extended to five places af-
ter the decimal point, this allows us to obtain more reliable values of 
the scaling factor, i.e. c = 0.00083, 0.00183, 0.00283, etc. (Table 1). By 
extending the number of decimal places, the results between the 
model and empirical observations correspond.

Variables Values

c 0.00083 0.00183 0.00283 0.00383 0.00483

P 17–25 84–121 200–288 367–528 583–840

Table 1. The interdependence of the valu-
es of the settlement population (P) and the 
scaling factor from the “Xtent” model (c).

It should be noted that M.A. Kolesnikov’s demographic constants 
are the population limits for hunters-gatherers and early agricultur-
alists. In particular, Australian hunters-gatherers strived to limit their 
number to 25, 100 and 500, but some groups exceeded this limit 
(Birdsell 1953; 1968, pp. 229–234; Wobst 1974; Hamilton et al. 2007b). 
Probably, settled societies produce populations at the low orders ap-
proximately equal to hunters-gatherers group sizes. The population 
numbers ranging from 800 – 2,000 that may be found in Hill/Dunbar 
2003; Zhou et al. 2005; Hamilton et al. 2007b for hunter-gatherers re-
gional populations or linguistic units will be discussed below.

As each settlement’s population, political influence and resource 
zone develop, assumption 1 is changed. According to equation 4, the 
population may grow (P0 = P0N’) due to the increase of the scaling 
factor               , the growth of the resource zone of the settle-
ment              , or under the simultaneous influence of two fac-
tors         , where P0 is an initial population, N’ is a variable, and 
K’ is a constant. Let us analyze these statements.

The values of 5,000–6,000 m for a radius of the resource zone, used 
in equation (5), were proposed as a limit, never exceeded by the ear-
ly agriculturalists (for the recent state of the resource zones prob-
lem see: Wilkinson 2005). More detailed studies show resource zones 
that are much smaller in size (Ammerman 1981; Pelisiak et al. 2006; 
Flannery 2009 et al.). As noted by S. Milisauskas and J. Kruk (1989, 
p. 406), populations do not adapt to “average” conditions, but to bad 
years when food resources are limited. Therefore, the population 
growth in central places due to the increase of the resource zone, 
when the scaling factor remains stable, seems to be far from reality. 
However, centers may increase the territory under political control 
that results in the capital’s population growth. This may be exem-
plified with the major part of Roman Empire history (Fletcher 2006, 
131–132). Resource zones of the satellites may grow in order to ob-
tain surplus, and subsequently affect population growth. Most prob-
ably, satellites growth due to an increase of the developed territory 
under constant economic activities reflects the resource potential of 
various regions.



JNA

Al
ek

sa
nd

r D
ia

ch
en

ko
Se

tt
le

m
en

t G
ro

w
th

 a
s 

a 
Fr

ac
ta

l
D

ec
em

be
r, 

11
th

, 2
01

3

w
w
w
.j-
n-
a.
or
g

92

The larger proportion of the lowest possible radius of a resource 
zone is controlled by a lower scaling factor. And as the impact of the 
scaling factor increases, both population and a resource zone in-
crease as well. Our simulations, given in Table 2 and Figure 1, show 
that the population growth rates are higher than the rates of the re-
source zone increase. These results correspond to the recent analysis 
of hunters-gatherers space use. M. J. Hamilton, B. T. Milne, R. S. Walker 
and J. H. Brown (2007a) showed that the area required by an individu-
al decreases with the increasing of the population size.

P = 25 P = 100 P = 200 P = 500

c=0.00083 12048.2 24096.4 34096.4 53855.4

c=0.00183 5464.5 10929 15464.5 24426.2

c=0.00283 3533.6 7067.1 10000 15795.1

c=0.00383 2611 5221.9 7389 11671

c=0.00483 2070.4 4140.8 5859.2 9254.7

c=0.00583 1715.3 3430.5 4854.2 7667.2

c=0.00683 1464.1 2928.3 4143.5 6544.7

c=0.00783 1277.1 2554.3 3614.3 5708.8

c=0.00883 1132.5 2265 3205 5062.3

c=0.00983 1017.3 2034.6 2878.9 4547.3

Table 2. The interdependence of the fixed 
values of the settlement population (P), 
the lowest possible radius of the resource 
zone and the scaling factor from “Xtent” 
model (c).

Fig. 1. The interdependence of the fixed 
values of the settlement population (P), 
lowest possible radius of the resour-
ce zone and the scaling factor from the 
“Xtent” model (c).
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Perhaps there is a limit to the size of the regions occupied by each 
group that is determined by transport costs or production efficiency 
(Algaze, 2008; Woldenberg, pers. comm. on 01.18.2011). Limits to the 
resource zone require economic and/or social innovations for long-
term settlement growth. Since economic and social development in-
volves information exchange and human interactions, the scaling 
factor c is a key parameter that rules population growth and reflects 
the interrelations between population size and the resource zones 
with different properties (Fletcher 1995; Hamilton et al. 2007a; 2009; 
Feinman 2011).

Strong correlations between the variables in equations (4) and 
(5) are possible when the population reaches its carrying capacity 
(P = Pmax). However, populations tend to stabilize below it (Strogatz 
2000, Fig. 2.3.3, 21–24). Most probably, stabilization points in settle-
ment growth or the demographic constants (Ps) reflect correlations 
between the population values and the total number and volume 
of the settlement’s functions. For example, the total population of 
China increased from 100 million to about 400 million during isola-
tion politics of the Ch’ing dynasty from the XVII – XIX centuries with-
out any effect on the capital’s population of about 1 million (Fletcher 
2006, p. 131). Such correlations between the demographic constants 
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and the socio-economic development explain the so-called “false ur-
banization” or population growth that is not supported by economic 
innovations and social development or a resource zone increase (Pf):

(6)

(7)

(8)

(9)

(10)

Thus, equation (4) is not appropriate and has to be replaced with 
the following equation set:

wherePmax is the carrying capacity, Ps is the demographic constant, 
P is the population below carrying capacity that is not equal to one 
of the demographic constants. Dbj is the radius of the resource zone 
or area under political control, c is the scaling factor that reflects the 
number and volume of the settlement’s functions, and T is a variable.

Since the simulation synthesis of the gravity model, the “Xtent” 
model and possible size of the resource zones produce demograph-
ic constants, they might be obtained using the equations (7) and (8). 
These values are described by the Pareto cumulative distribution 
function with exponent α = 1:

where x is a random variable and x m is the (necessarily positive) min-
imum possible value of x.

It should be noted that Pareto distribution is a continuous one. Al-
though the distribution of the population sizes may be described 
with this function, they remain discrete. If the mode (x m) is equal to 
25, the cumulative distribution function according to M. Kolesnikov’s 
data (2007) takes the values 0.000, 0.750, 0.875, and 0.950.

Several studies have shown that Pareto distribution is appropri-
ate for organizational complexity analysis (Andriani/McKelvey 2009). 
M. Beckmann’s model, which is different from our synthesis above, 
describes the distribution of cities within the hierarchy of central 
places. Both result in a distribution described by a Pareto distribu-
tion with an exponent of 1 (Beckmann 1958, 245–246). Since our syn-
thesis explains the distribution of cities predicted by CPT, one may 
conclude that our modeling is an appropriate mode for CPT. Most 
likely, the use of a gravity model or “Xtent” model in our synthesis de-
termines W. Christaller’s “threshold area” and the “range of goods” in 
central place hierarchies (Parr 1995; Woldenberg, personal commu-
nication on 03.09.2011).

The evidence for small centers that have no central functions con-
tradict both the equations 7–9 and the CPT. Moreover, the problem of 
the function ratio of the settlement and its population number seems 
to be the most important issue of the CPT application to archeological 
materials (Adams 1974; Crumley 1976; Smith 1976; Johnson 1977, 494–
501; Sindbæk 2007; Nakoinz 2009). W. Christaller notes the existence 
of hamlets without central functions. Some small agricultural settle-
ments have no economic service functions, but they may serve as so-
cial centers or fulfill defense purposes (Christaller 1966, 16, 139–151). 
The following section examines the factors that influence the forma-
tion of the small centers without central functions.
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Assumption 2: As an alternative to Assumption 1, suppose that a set-
tlement system is characterized by an intensive growth of popula-
tion. The settlements fill the region of inhabitance and their distri-
bution is described by M. Beckmann’s model. The peculiarities of the 
economic activity limit the least serviced places to populations of 25 
persons and the place with the most services to a population of 500.

Development: M. Beckmann’s symbolic model is as follows:

(11)

(11)

where pm is the population of the city of order m, r is the rural popu-
lation in the market area of the town at order 1, and k is the ratio of 
the city size to the rural and town population served. The variable s 
is the parameter of system optimization (Beckmann 1958, 243–244).

Following M. Beckmann, B. Berry and P. Haggett, the index s corre-
sponds to the K-numbers of W. Christaller (Berry 1967, 74–75; Beck-
mann/McPherson 1970, 25; Haggett 1979, 373).

Solving the problem of the urban and the rural population ratio, 
equation (12) is derived from equation (11):

Since r and pm are given by Assumption 2 and the values of s corre-
spond to the К-Values К=2, К=3, К=4, and К=7, we have three knowns 
and two unknowns. Therefore, we can calculate the values for the 
right part of the equation for different values of m. This provides four 
knowns and allows us to calculate k. The data is rounded to the near-
est thousandth and is given in tables (Table 3). Through the shares of 
the servicing populations, we obtain the number of inhabitants for 
each of the elements of the four settlement system structures. This 
data is rounded to integers and is presented in Table 4.

m k

3 0.2 0.527

4 0.4 0.377

5 0.8 0.266

6 1.6 0.184

m k

3 0.45 0.424

4 1.35 0.243

5 4.05 0.126

6 • •

m k

3 0.8 0.348

4 3.2 0.157

5 12.8 •

m k

3 2.45 0.237

4 17.15 •

5 • •

Table 3. The population share of the cent-
ers in the settlement systems with dif-
ferent character of optimization (К) and 
varied number of the orders in spatial 
hierarchy (m) after equation (12).

Table 4. The population of the centers in 
the settlement systems with different char-
acter of optimization (К) and varied num-
ber of the order in spatial hierarchy (m).

a. К = 2 = s

a. К = 2 b. К = 3 c. К = 4 d. К = 7

b. К = 3 = s

c. К = 3 = s d. К = 7 = s

O
rd

er
 in

hi
er

ar
ch

y

Population for a system

of m orders

Total number of orders

2 3 4 5 6

1 25 25 25 25 25

2 500 118 49 25 14

3 500 156 67 34

4 500 183 83

5 500 203

6 500

O
rd

er
 in

hi
er

ar
ch

y

Population for a system

of m orders

Total number of orders

2 3 4 5

1 25 25 25 25

2 500 96 32 12

3 500 126 42

4 500 146

5 500

O
rd

er
 in

hi
er

ar
ch

y

Population for a

system of m orders

Total number of orders

2 3 4

1 25 25 25

2 500 82 22

3 500 105

4 500

O
rd

er
 in

hi
er

ar
ch

y

Population for a

system of m orders

Total number of orders

2 3 4

1 25 25 •

2 500 96 •

3 500 •

4 •

Preliminary results

For settlement systems with К-numbers К=2, К=3 and К=4, the 
model shows the existence of small centers with the population 
equal to or less than the population of basic rural settlements (Table 
4: а–с). According to the simulations, if we have:
1)  a high level of geographical structuring of the settlements;
2)  steady values for the population of the largest central place  

 and the basic rural communities over time, 
then the small centers may have a population equal to or less than 
the basic rural settlement.
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Next, we will consider the problem of growth for the largest set-
tlements. As noted by D. Pumain, the models of spatial systems, es-
pecially when mathematically expressed, describe these systems 
well enough for relatively static conditions over a time period, but 
are not adequate to describe long-term historic changes (Pumain 
2000, 73–77). Equally, it can be pointed to M. Beckmann’s symbol-
ic model, the rank-size rule and allometric growth. The models are 
extremely similar mathematically (Beckmann 1958, 245–248; Wold-
enberg/Berry 1967, 131–136; Woldenberg 1973; Batty 2005, 161–162). 
However, recent analyses show the fractal patterns of human popu-
lation structure characterized with constant scaling ratios (Zhou et 
al. 2005; Hamilton et al. 2007b). This allows the generating of an al-
gebraic fractal that includes the demographic constants. The results 
may be tested with contemporary settlement systems. (It should be 
noted that B. Mandelbrot (1983, 5) described the etymological op-
position of the terms “fractal” and “algebra.” However, we combined 
these terms, as Russian physicists do, for example). The following 
section will examine the existence of fractal scaling in the distribu-
tion of modern cities.

Assumption 3: Let us assume that the size of the population previ-
ously found for the service centers becomes a characteristic feature 
for the serviced places. By applying the iteration of the demographic 
constants, center growth will be described by the Pareto distribution 
with an exponent of 1, with the domain values of the cumulative dis-
tribution function 0.000, 0.750, 0.875, and 0.950.

Let us assume that the repeating points (repetition of values which 
occur two times and more in Table 5) generated by the mentioned 
distribution are an indicator of positive feedback or qualitative 
changes in economic and/or social subsystems. Positive feedback 
describes following structural change to the system. A change in ele-
ment A causes a change in element B which promotes a subsequent 
change in A away from its original value (Woldenberg/Berry 1967, 
129–130; Flannery 1968, 79–81; Renfrew 1972, 23–26; Sherratt 1972, 
481–482 et al.). The growth of the settlements is stabilized near the 
repeating points. Therefore, in this paper the term “repeating point” 
is equal to “stabilization point” or “demographic constant”.

Table 5. The population of city hierar-
chies with different initial values.

Initial values 25 100 200 500 800 2,000 4,000

Values at
successive
orders

100 400 800 2,000 3,200 8,000 16,000
200 800 1,600 4,000 6,400 16,000 32,000
500 2,000 4,000 10,000 16,000 40,000 80,000

Initial values 16,000 64,000 128,000 320,000 512,000 1,280,000 2,560,000

Values at
successive
orders

64,000 256,000 512,000 1,280,000 2,048,000 5,120,000 10,240,000
128,000 512,000 1,024,000 2,560,000 4,096,000 10,240,000 20,480,000
320,000 1,280,000 2,560,000 6,400,000 10,240,000 25,600,000 51,200,000

Initial values 10,240,000 • • • • • •

Values at
successive
orders

40,960,000 • • • • • •
81,920,000 • • • • • •
204,800,000 • • • • • •

Development: The results of applying the Pareto distribution with 
an exponent of 1, and the domain values of the cumulative distribu-
tion function 0.000, 0.750, 0.875, and 0.950 are combined into Table 
5. Using the following progression, we can separate four groups of 
the values (given in thousands):

(13)
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where m is the order (0, 1, 2 … n) of the settlement in the spatial hier-
archy, К = 2, and p is equal to these values:

- 0.1; 0.2; 0.4; 0.8; 1.6; 3.2; 6.4;
- 2; 4; 8; 16; 32; 64; 128; 256;512; 1,024; 2,048; 4,096;
- 40; 80;
- 1,280; 2,560.
It should be noted that identical progressions are empirically known 

for the number of service functions of central places in Iowa and in 
the Aberdeen region of South Dakota (Woldenberg/Berry 1967, 134; 
Berry 1967, 38). However, this regularity does not refer to four values 
of population – 0.5, 10,000; 320,000 and 6,400,000 (Table 5).

The regularities, obtained with equation (12), are close enough to 
the results that were received by M. J. Hamilton, B. T. Milne, R. S. Walk-
er, O. Burger and J. H. Brown (2007b). Since the scaling ratio close to 
4 may be written as 2 raised to power 2, the regularity in the struc-
ture of hunters-gatherer social networks may be written as follows:

(14)

(15)

(16)

where b is equal to these values: 2; 4; 6; 8 and 10.
Thus, equation (13) covers all the values close to digits that were 

produced with equation (14). 
Now one should return to the repeating points, mentioned in As-

sumption 3. They are combined into Table 6. In the table one finds 
the population of the “normal polis” and the proto-polis of antiqui-
ty. The former is situated within a limit of 2000–4000 persons and 
the latter within a limit of 500 persons (Bintliff 2006). The model val-
ues also correspond to the values found in inhabited areas in Europe 
from the Middle Ages until the present (Hodgett 1972; Cherry 1972 
20–25, 215–217; Chandler/Fox 1974 et al.).

Our fractal is divided into three parts beginning with the values 
10,240,000; 16,000 and 25 (the basic initiator). Each part begins with 
a single value that is repeated three times. The first and second parts 
of the fractal are complete. The third part of the fractal is “growing” 
(Tables 5 and 6).

The algebraic similarity coefficient of the obtained data is equal to 
1/640. One first takes the initial value (25) in the first part of the fractal 
and divides it by the first initial value (16000) in the second part of the 
fractal directly below it, whereby the result is 1/640. This relationship is 
true for each part of the fractal to the right of the first part. In addition, 
if one takes the next value in the first part, which is 100, and divides it 
by the next value in the part below it, one also obtains 1/640. The re-
sults are similar for each column of numbers to the right and for each 
row below (see Table 5 and 6: 64,000 х 1/640 = 100; 10,240,000 х 1/640 
= 16,000, etc.). Most of the fractals are characterized by the fractional 
Hausdorff dimension (Mandelbrot 1983, 15). In this case, the Hausdorff 
dimension (Hausdorff 1919) can be calculated as:

• 10,240,000 •

512,000 1,280,000 2,560,000

64,000 128,000 320,000

• 16,000 •

,800 2,000 4,000

,100 200 500

• 25* •

*25 is the basic initiator

Table 6. The repeating numbers in Ta-
ble 5 (These values are the values which 
occur two times and more in Table 5).

where D is the Hausdorff dimension; Q is the number of parts for the 
set and Z is the coefficient of self-similarity.

Therefore, the Hausdorff dimension for this set is:

Direct growth of the settlements is simulated by a generator that 
is a Pareto distribution function with an exponent of 1 and the val-
ues of 0.750, 0.875, and 0.950. In other words, the modal value is in-
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Figure 2. The population growth in the 
long-term perspective.

In the fractal, the generator of the structure of settled systems is 
the 0 value of the Pareto distribution function. The modal value is in-
creased one time. In any new level, the generator “reproduces” the 
population characteristics of the settlements of all previous levels. 
With this modeling, one can explain the iteration of the population 
of the inhabited areas with different economic and political systems, 
which is empirically verified (Bairoch 1988, 3–210, 310–314; Fletcher 
2006). In addition, the points generated with the values of the Pareto 

creased 4, 8, 20 times correspondingly. It is noteworthy that in the 
different growth phases repeating points fix different growth rates. 
In the first phase, the inhabited areas are increased by factors of 4, 
8, and 20 times. In other words, growth increases at an accelerating 
rate. The cycle for the largest centers has a decelerating rate of 20, 
8, and 4. In the final phase of the cycle (ratio 0.8, 2 and 4 thousand 
– 16 thousand), population is also increasing at the same decelerat-
ing rate (Table 6). The growth of the population of the settlements is 
schematically presented in Figure 2. The time periods are indicated 
on the abscissa as uniform. However, they are not uniform in reality. 
The growth rate values on the ordinate axis are obtained by means 
of the addition of the growth rates in each of the phases to the values 
already achieved. These growth values between 20 and 72 can be 
somewhat varied, but it does not change the picture of the growth 
trends. These graphic results are extremely close to the results of E. 
Zubrow’s model, which describes the population growth of a micro-
region and its number of settlements. This model includes variables 
describing the demographic structure of the population (including 
migration), the duration of settlement functioning, and resource 
growth (Zubrow 1975 99–111). E. Zubrow’s model of prehistoric car-
rying capacity and the results presented in Table 6 do not contradict 
the empirically fixed exponential or logistic growth (Haggett 1979, 
322–324). They both describe the logistic curve as a single, relatively 
short-term case in a long-term process. Economic innovations and/
or social development increase carrying capacity and related the de-
mographic constant (equations 7–9). Thus, the logistic curve trans-
forms in the more complex graph, consisting of logistic curves that 
grow one from another (Batty 2007, Fig. 1.2, 27–29).
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distribution function of 0.750, 0.875 and 0.950 on each new level are 
also reproduced. In this case, they provide a diagnosis of positive 
feedback. Therefore, the growth of the settlements is stabilized near 
all of those points. An empirical illustration is the distribution of the 
inhabited areas in Iowa at the beginning of the 1960s. There is a set-
tlement hierarchy in which the number of inhabitants was distribut-
ed across settlements that have populations of 100; 500; 1,500; 6,000; 
60,000; 250,000 and above 1,000,000 (Berry 1967, 21).

Testing of the preliminary data. The following hypothesis is de-
duced from the concept relating to growth stabilization in set 
points. The number of city groups in an actual growing system of 
settlements classified into orders corresponds with the number of 
“ideal cities” or settlements of different population size obtained by 
the model. If such groups include several “ideal cities” (stabilization 
points), their number corresponds with the number of subgroups, 
sub-subgroups, sub-sub-subgroups, etc. If the cities belong to 
groups and subgroups that do not contain “ideal cities”, the growth 
of the population is not steady. It can grow rapidly or collapse rap-
idly. Sturges’ rule and ranking are applied for classification. Sturges’ 
rule is written as:

(17)

where xmax and xmin are the extreme members of the series; g is the 
recommended interval number; h is the recommended interval 
length; and n is the total number of data values.

To verify the model, we used the data from “micropolitan” and 
“metropolitan” areas in the US in 1990 and 2000 (Census 2003, Tab. 
1a). We did not divide groups containing the cities with the lower 
population values (subgroups A and 1, sub-subgroups B, 1 and 2, a) 
into sub-sub-subgroups because other subgroups are representa-
tive enough to verify the model.

The cities in 1990 may be divided into four groups. Their popula-
tions range between the following:

I. 12,463 – 1,542,789;
II. 1,542,789 – 4,603,440;
III. 4,603,440 – 12,255,069;
IV. 15,315,720 – 16,846,046.

Group I was divided into six subgroups: A, B, C, D, E and F. Sub-
groups B and C correspond to the model values 320,000 and 512,000. 
Subgroups D and E correspond to the model values 1,024,000 and 
1,280,000. Subgroup F does not correspond to the model values. 
Groups II and III were divided into subgroups G, H, I, J, K, L, M, N 
and O. Subgroups H, I, L, M and O correspond to the model values 
2,048,000; 2,560,000; 4,096,000; 5,120,000 and 10,240,000. The mod-
el value of 6,400,000 does not correspond to any empirical values. 
The maximum value of 16,846,046 included into group IV also does 
not correspond to model data (Table 7).
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Table 7. US Cities in 1990 and the Model 
Values.

The cities in 2000 may be divided into four groups. Their popula-
tions are between the following:

I. 13,004 – 1,677,549;
II. 1,677,549 – 6,671,185;
III. 8,335,730 – 13,329,366;
IV. 16,658,457 – 18,323,002.

Group I was divided into five subgroups: 1, 2, 3, 4, 5, 6, 7 and 8. Sub-
subgroups 2, b and 2, c of subgroup 2 correspond to the model val-
ues of 256,000 and 320,000. Subgroup 3 corresponds to the model 
value of 512,000. Subgroups 5 and 6 correspond to the model val-
ues of 1,024,000 and 1,280,000. Subgroups 4, 7 and 8 do not corre-
spond to model values. Group II was divided into subgroups 9, 10, 11, 
12 and 13, corresponding to the model values 2,048,000; 2,560,000; 
4,096,000; and 5,120,000. During ten years, the population of the Phil-
adelphia metropolitan area (5,687,147) came closer to the model val-
ue of 6,400,000. Two values included into group III correspond to the 
model value of 10,240,000. The population of the New York metropoli-
tan area came closer to the model value of 20,048,000 (Table 8).

Groups
and subgroups

Intervals Number of cities Model values

I 12,463–1,542,789

A 12,463–150,809 703

B 150,809–427,502 127

B, 1 150,809–218,954 56

B, 2 218,954–286,910 26 256,000

B, 3 286,910–388,844 39 320,000

B, 4 388,844–422,822 6 -

C 427,502–704,195 35 512,000

D 704,195–1,119,235 21 1,024,000

E 1,119,235–1,395,928 7 1,280,000

F 1,395,928–1,534,274 9 -

II 1,542,789–4,603,440

G 1,636,528–1,844,917 3 -

H 2,067,959–2,238,480 3 2,048,000

I 2,382,172–2,588,793 7 2,560,000

G 3,069,425 1 -

K 3,686,592–3,767,335 2 -

L 3,989,294–4,248,699 5 4,096,000

III 4,603,440–12,255,069

M 5,435,468 1 5,120,000

- - - 6,400,000

N 8,182,076 1 -

O 11,273,076 1 10,240,000

IV 16,846,046 1 -
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The negative case of the model predicts a rapid growth of 13.5% 
of the US cities over 218,954 since 1990 and 18.13% of the US cities 
over 198,112 since 2000. These results are confirmed by the popula-
tion growth rates for 86.96% of the cities that should not have steady 
population growth since 1990. 26.08% of these cities had a very rap-
id growth rate of 21.3 – 38.4% (Census 2003, Table 1; Mackun 2005). 
According to the model, the population of the New York metropoli-
tan area should stabilize near the point of 20,048,000. Cities that had 
a population of 606,297 – 902,944 and 1,347,914 – 1,644,561 in 2000 
should grow very rapidly or decrease in population.

Discussion of the preliminary results. The model is efficient to an-
alyze the growth of the population aggregates during long time 
periods and, probably, also medium term perspectives. The model 
values reflect positive feedback in the system transformation. Demo-
graphic constants indicate the optimal balance in population values, 
economics and socio-political organization and the spatial location 
of the population.

Population growth is described with an algebraic fractal with 
Hausdorff dimension approximately equal to 0.17. The model is used 
to describe population growth in positive feedback, with an increase 
in economic activity and political influence of the population aggre-
gates, and the so-called “false urbanization”.

Conclusions and Discussion

In the long-term perspective, settlement growth is the dynamic pro-
cess in a punctuated equilibrium state. Nonlinear relations between the 
population number, the economic and the socio-political organization 
produce relatively long periods of stasis, interrupted by rapid bursts 
(Rosenberg 1994; Bak 1996; Lyman/O’Brien 1998; Gould /Eldredge 2003; 
Bentley 2003; Ramsey 2003; Chatters/Prentiss 2005; Zeder 2009; Dow/

Groups
and subgroups

Intervals Number of cities Model values

I 13,004-1,677,549

1 13,004–161,327 691

2 161,327–457,974 133

2,a 161,327–198,112 38

2,b 198,112–269,431 35 256,000

2,c 269,431–447,728 60 320,000

3 457,974–606,297 21 512,000

4 606,297–902,944 27 -

5 902,944–1,051,268 2 1,024,000

6 1,051,268–1,347,914 14 1,280,000

7 1,347,914–1,496,238 1 -

8 1,496,238–1,644,561 7 -

II 1,677,549–6,671,185

9 1,735,819–2,179,240 8 2,048,000

10 2,395,997–3,254,821 9 2,560,000

11 4,123,740–4,452,557 4 4,096,000

12 4,175,407–5,165,544 4 5,120,000

13 5,687,147 1 6,400,000

III 8,335,730–13,329,366 2 10,240,000

IV 18,323,002 1 20,480,000

Table 8. US Cities in 2000 and the Model 
Values.
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Reed 2010). According to the model equations (7–9), population stabi-
lizes near discrete fixed points corresponding to the number and vol-
ume of a settlement’s functions. As soon as population grows above 
these points, getting closer to carrying capacity, population pressure 
affects both economy and social organization. This results in fluctua-
tions in settlement growth. Settlements grow to the next stabilization 
point or decline. Population pressure increases a probability of eco-
nomic innovations and socio-political transformations.

The long-term growth of settlements is described with an algebra-
ic fractal with a Hausdorff dimension of 0.17, set by the discrete fixed 
points or demographic constants. It should be noted that M. J. Wold-
enberg (1968; 1969) also found fixed points in the number of comple-
mentary regions. The model generator is synthesized from the grav-
ity model, the “Xtent” model and the site catchment analysis. This 
confirms the utility of these models, with some modifications, for the 
study of the long-term settlement growth. The generator is close to 
M. Beckmann’s model, describing the city distribution in the hierar-
chy of the central places. However, the generator is not identical to 
this distribution.

When describing settlement growth rate, the proposed model is 
close to the data of E. Zubrow’s (1975) model of prehistoric carrying 
capacity. Both E. Zubrow’s model and our model describe the logis-
tic curve as a single, relatively short-term case in a long-term pro-
cess. The proposed model is characterized by a discrete distribu-
tion of stabilization points for settlement growth. In this aspect, the 
model agrees with W. Christaller’s Central Place Theory. The scaling 
ratio produced by a model is approximately equal to the ratio indi-
cated for hunter-gatherer group size; our simulations show trends 
in land use similar to those found for hunter-gatherers (Hamilton et 
al. 2007a; 2007b). Since economic and social development involves 
information exchange and human interactions, a settlement’s num-
ber and volume of functions is a key parameter that rules the popu-
lation growth in the long-term perspective and reflects the interrela-
tions between population size and the resource zones with different 
properties (Fletcher 1995; Hamilton et al. 2007a; 2009; Feinman 2011).

The simulations that develop assumption 2 find the conditions 
when the small centers in the hierarchy of central places are char-
acterized with the smaller values of the population in comparison 
with the basic rural settlements. These conditions are: the popula-
tion growth with a high level of geographical structuring of the set-
tlements and steady values for the population of basic rural settle-
ments and the largest central place.

We hope that this paper will be helpful for the further work on the 
problems of settlement growth. The work on the structure of settle-
ment systems and the short-term fluctuations in settlement popu-
lations seems to be the priority for future development of the pro-
posed model. Another important aim for future research is also the 
analysis of the ratio of economic and political development in settle-
ment growth.
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